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ABSTRACT

Mathematica is a symbolic manipulator with graphical capabilities. During the
fall 1990 semester, I used Mathematica on my NeXT workstation to create graph-
ics for teaching the method of steepest descents. This required level curve plots
and surface plots for the real or imaginary part of functions of a complex variable.
By the end of this topic in the course, I was doing near-research-level analysis of
complex valued functions. The response of my class was also very positive. In
Part I of this paper, I described some of the more elementary examples presented
in that class. Here, I describe the application of the technique to the problem of
scattering by a half plane, including the analysis of the exponent that leads to
refracted and evanescent waves in a layered medium.

INTRODUCTION

In Part I of this paper [Bleistein, 1992], I described the application of Mathematica
to create contour plots and surface plots of the real and imaginary parts of complex
valued functions. More specifically, I did this in the context of the method of steepest
descents, about which I have written extensively, including chapters in two books
[Bleistein, 1984; Bleistein and Handelsman, 19861. As discussed in the introduction
to Part I, this project arose as part of the teaching of a course entitled "Multi-valued
functions and their applications."

Part I of this paper dealt with standard textbook examples of exponents, starting
from a simple saddle and monkey saddle and continuing on to discussion of the ex-
ponent of the integral representations of Airy functions and Bessel functions. Here,
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I will describe the application to the exponents that arise in propagation of acoustic
waves from a line source over a half space of higher propagation speed. I discuss first
the analysis of the exponent for the direct or free-space wave and then the exponent
for the refracted/evanescent wave.

I should also point out that some of my research was carried out on a more
primitive graphics terminal by using Mathematica in terminal mode and including an
appropriate file describing the graphics profile of the terminal. This was done with
more sparse pictures at 2400 baud resulting in lesser quality graphics, but adequate
for many purposes. There is one distinct advantage to the graphics at 2400 baud.
The curves evolve more slowly on the screen and, at times, insight is gained from the
evolution.

I also used the Mathematica graphics in teaching the Cagniard-de Hoop method
[de Hoop, 1960: Cagniard, 1962; Aki & Richards, 1980] in this course. In this method,
straightforward conformal mappings become useful, as well as the analysis of the
position of singularities in the mapped plane. Some of these applications will appear
in a forthcoming paper [Bleistein and Cohen, 1992].

BACKGROUND: ON THE METHOD OF STEEPEST DESCENTS

This is a briefer review of material already presented in Part I.

The method of steepest descents is concerned with integrals of the form

I(,\) =g(z)exp{Aw(z)}dz. (1)

Here, we use the notations, z = x + iy and w(z) = u(x, y) + iv(x, y), with x, y, u, v,
all being real. In this integral, C is a contour in the complex z plane. The method is
concerned primarily with asymptotic approximations of this integral for large positive
values of A, although the method is also relevant to numerical approximations for any
choice of A.

The objective of the method is to use Cauchy's theorem to justify replacing the
given contour of integration by one or a sum of contours that have been chosen
for particularly rapid convergence of the resulting integrals. The rapid convergence
is achieved by choosing these contours in such a manner that u(x, y) = Re ,(z)
decreases most rapidly from its reference value at a so-called critical point. Candidate
critical points include points where u, and/or g fails to be analytic and points where
the first and, possibly, higher derivatives of w vanish. These are the saddle points.

In Part I, we explained how to recognize these paths from contour plots of v(x, y).
We refer the reader there for further discussion except that we repeat here the stan-
dard terminology. Paths along which u(x, y) decreases (increases) are called paths of
descent (ascent). Paths along which this decrease (increase) is most rapid compared
to neighboring paths are called paths of steepest descent (ascent). At each point on
these paths, the tangents are called directions of steepest descent (ascent).
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In Part I, the following examples were discussed:

w(Z) = -- ; w(z) = z; w(z) = _ - z3/3, w(z) = i[cos z + .5(z - 7r/2)].

Clearly, for simple examples, the analysis of the paths of steepest descent can all
be done by hand. However, even in those cases, exposition is greatly improved by
the computer graphics such as the ones presented in Part I and below. Furthermore,
hands-on experience by the student becomes a valuable learning tool. Finally, as an
indication of the power of this additional graphical tool, in the last example presented
here, computer implementation helped me to see a saddle point that is the solution
of a fourth order equation in z. This was a case in which I already knew that the
saddle point was out there somewhere and the graphical output helped me locate it.
I would suggest that a similar analysis is possible where the presence of such saddle
points is only suspected.

POINT SOURCE OVER A HALF SPACE

The physical problem is as follows. Consider a point source in two dimensions-or
a line source in three dimensions-for an acoustic medium of variable propagation
speed. In particular, the source resides in an upper half space with a propagation
speed, cl, and horizontal boundary. Below is a medium with propagation speed,
C2 > C1 .

The solution to this problem has been well-studied, as in my own book [Bleistein,
1984]. A more complete discussion can be found, for example, in Brekhovskikh 119801.
Here we will discuss the exponents of the Fourier representation of the solution on
both sides of the interface.

Exponent for the Frimary Wave

By primary, we mean the signal emanating from the source point. This part of
the signal is unchanged from what it would be with no interface at all, that is, for
the propagation speed being cl throughout.

The Fourier representation of this wave has as exponent,

D(k, w,x 1 ,x 3 ) = i[kxI + kJx3 1], (2)

where,

k2{ 2 , k2 > /(3)k3 2)<W 2/C

Here, k is the horizontal wave number and w is the frequency; xJ and X3 are the
horizontal and vertical coordinates, respectively.

Our objective is to rewrite this exponent in the form of (1) in dimensionless
variables. (We proceed under the assumption of positive w; adjustments to this
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discussion for negative w are straightforward but not relevant to the discussion here.)
To this end, set

x1 = p cos 0, x3 = p sin 0, k = zw/cl, (4)

and rewrite (2) as

,D = Aw(Z), A = pw/cI, w(z) = i [zcose + v-z sin0] . (5)

For this example, then, large A means that the observation point is at a distance
p that is large compared to the wave number, w/cl, or "many" wavelengths away
from the source, for the frequencies of interest. We should think, then, of some
source signature, not explicitly stated, with some defined passband of frequencies of
interest and an observation range for which A is "large"- typically, three or more
wave lengths.

For the purposes of this illustrative example, we must make a choice of 0; we
choose 0 = 7r/3. Thus, the exponent to be analyzed in this case is

W(Z)= .5[z + v'3VTC ]. (6)

Note that for this exponent, we are beyond the point where explicit formulas for
u(x, y) and v(x, y) are helpful. The multi-valued square root here is chosen to be
positive at z = 0 and to be positive imaginary for z = x, Ix > 1, so that Re w(z) < 0
in this latter range. This is equivalent to moving to the outer part of the x axis by
passing above the branch point at z = -1 and passing below the branch point at
z = +1. In what follows, we will take this function to have branch cuts that are
vertical-upward from z = 1, downward from z = -1.

As a side issue, note that the choice of branch cuts are not crucial to the method.
Evaluation of the square root is carried out by knowing its value at one point-z = 0-
and knowing how one arrived at any other point on a connected path. The choice
of values of a multi-valued function is then determined by continuity considerations.
The particular choice of cuts assures us that the given path of integration and the
paths of steepest descent derived below will not intersect the branch cut. In fact, one
need not introduce branch cuts at all to proceed with the analysis, as long as one
defines the square root continuously, as noted. However, for computational purposes,
one must define a single-valued, albeit discontinuous, function in order to proceed.
The square root is single valued in the cut plane, but discontiuous across the cuts.

For the function defined by (6),

w'(z) = .5i I-zv3 1()v_ 71 %/_ w"(z) 2[1 - z2] 3/2 '

One can check that

w'(.5) = 0, w(.5) = i, w"(.5) = -4i/3. (8)
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FIG. 1. Level curves of Ilz[ {.5(z + ,./l -z2]
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Thus, for this example, there are a saddle point and two branch points in the function
,,(s).

In Figure 1, we show the level curves of v(x, y). Perhaps surprisingly, the branch
cuts show up as darkened sections of the plot. What is happening here is that the
constant value of v(x, y) on one side of the cut does not occur at all on the other
side of the cut. Apparently, under these circumstances, Mathematica simply takes
the contour out of the figure entirely to the nearest edge over one step in x. This can
be seen more clearly in Figure 3 below, where we have limited the plot to only the
level curves of v(r, y) that produce the steepest ascent and descent paths through the
saddle points. The steepest ascent paths intersect the branch cuts and behave as we
have described. The ensemble of such "broken" level curves taken together comprise
the darkened section of the figure around the branch cut.

The saddle point is also visible through the now familiar signature of the level
curves moving in and away from that point, but otherwise locally remaining in quar-
ter sectors near that point. Although we do not have the steepest descent and as-
cent paths here - the level curves through z = .5-the plot does support the com-
plex function theory that predicts that the paths of steepest descent make angles of
-7r/4, 37r/4, with the positive x axis, while the paths of steepest ascent make angles
of 7,r/4, -37r/4, with this axis. (Recall that these are the pair of level curves of z'(x, y)
that must cross at the saddle point.)

This figure was produced with the following command line.

ContourPlot[Im[I ( (x + I y)/2 +
Sqrt[l - x - I y]
Sign[Arg[l - x - I y] + Pi/2]
Sqrt[x + I y + 1]
Sign[Arg[x + I y + 1] + Pi/2]
Sqrt[3]/2 )], {x,-4,4},{y,-4,4},
ContourLevels -> 81
PlotPoints -> 40]

The square roots of I ± z with appropriate branch cuts each take two commands
to describe. The reason is that Mathematica produces a principal value square root
with argument 6 restricted to -7r < 7 < r. To get a square root with a different
angular range, we must take the alternate branch of the square root in the sector
where we are not using the principal v'-Iu,; essentially, change the sign of the square
root across the branch cut. We leave it to the reader to verify that the function

V/F sign [Arg[z] - a]

puts the branch cut of V/: at arg[z] = a, and that the proper location for the branch
cuts for 1 + z is at a = - r/2.

The choice of the number of ContourLevels and PlotPoints here was obtained by
trial and error to produce an informative and esthetically pleasing plot.
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FIG. 2. Surface of Re {i[.5(z + -3-1 - z2 )]}.

In Figure 2, we show the surface u(x, y). This figure was produced with the fol-
lowing command line.

Plot3D[Re[I ( (x + I y)/2 +
Sqrt[1 - x - I y]
Sign[Arg[1 - x - I y] + Pi/2]
Sqrt[x + I y + 1]
Sign[Arg[x + I y + 1]+ Pi/2]
Sqrt[3]/2 )], {x,-4,4},{y,-4,4},
BoxRatios -> {4,4,2},
ViewPoint -> {S,10,10}]

In the figure, we see the branch cuts as "creases" across which-again, in one x
sample width--Re w(z) jumps from its value on one side of the branch cut to its value
on the other side. Above the x axis, between ±1, the surface is level, because w(z)
is purely imaginary there: u(x, y) = 0. The steepest descent and ascent directions on
this surface make angles of 450 with this line. The position of the saddle point is not
obvious on this figure, but the features of u(x, y) "in the large" are quite apparent.
In particular, one can see the hills and valleys of the surface much more clearly here
than from Figure 1.

II || $|| u .7
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FIG. 3. Steepest descent and ascent directions through the saddle point at z =.5.

8



Norman Bleistein Mathematica and...

Figure 3 shows the steepest descent and ascent paths through the saddle point.
Though the neighborhood of the saddle point itself is clear, here, the plot breaks
down at the branch cuts in the manner describe above in the discussion of Figure 1.
Unfortunately, the Mathematica command, Show, does not work with ContourPlot.
If it did, we could overlay Figure 1 and Figure 3 to see the fit of the steepest paths
here within the level curves of the former figure. However, the reproductions here are
to scale and the reader might be able to do that with copies of the figures.

Exponent for the Transmitted Wave

As a second example for this paper and last in this series, we discuss the exponent
for the transmitted wave for this same problem. In dimensional variables the exponent
of interest in this case is also derived in Bleistein [1984], equation (8.1.11). In slightly
different notation,

4,(k,wx 1 ,x 3 ) = i[kxl + k4[x3 - h] + k3h], (9)

with

i Ck2 - 2 c, k2 < W21c.

kj- /, k I I'2 }(0
and k3 as defined in (3). This exponent represents a wave that propagates downward
a distance h to the interface with vertical wave number k3 and then propagates
downward a distance x 3 - h with vertical wave number k4. Of necessity, the distance
h must be many wavelengths for high frequency asymptotics to be valid. Thus, we
introduce the new dimensionless variables, z, a, 03, by

k = zw/c, x 1 = ah, x3 - h =/3h, (11)

and choose c2 = 2c, for this example. In this case, (9) becomes

=Aw(z), A =hcj,,() = i [az +v'Ov.T25---2 +(12)

Ve must make a specific choice of a and for making plots. We choose values
below the region of critical reflection for the specific relationship between cl and c2,
so that we can anticipate seeing some effect of the evanescent waves that we expect
to be propagating in this region. The particular choice I made was a = .7 and '3 = .4.
Oi course, in an unfamiliar problem, such choices must be arrived at by analysis or
trial and error. In this case, w(z) as defined in (12) becomes

11'(Z) = 1.7z + .4.25 -Z 2 + - .(13)

For this function

=i .7 - .4 .2 5 z 2
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FIG. 4. Level curves of 1111 {(.7z + A.25 - : 2 + V/1 _ 2)).

(14)

K.25  Z232 {1-i 2
We can be sue that w()has a saddle point oin the real axis. To see why this is
so. note that w'(0) = .Tdi and ?'(z) --+. o as z = xr - .5, while remaining purely
imiaginary for z= xi iii this interval. Therefore, 'z must pass through zero~ andl
the location of that zero is the saddle point. Furthermore, it"( z) $ 0 onl this interval:
froin (14) it (,ail be seen to b~e negati ,v-iimaginary here.

Replacing the multilplier .4 by1 zero is eqluivalent to taking anl observation point in
the p)hysical (loilain right onl the interface. WVe canl check, in this case, that there is a

saddle point at : = .4-9/1.49 ;z- .57 > .5. Perturbation analysis reveals that this zero
of '()moves vertically upward in the ---plane when the distance fromn the interface
in the physical space increases fromn zero. These are the features we should expect to
see in the level curves and surface plot for t his function.
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Figure 4 shows the level curves of v(x,y). The two branch cuts and the saddle
point on the real axis, as well as the saddle point above the real axis between the
branch cuts are all visible. This figure was produced with the following command
line.

fl = ContourPlot[Im[I ( .9(x + I y) +
.4 Sqrt[.5 - x - I y]
Sign[Arg[.5 - x - I y] + Pi/2]
Sqrt[.5 + x + I y]
Sign[krg[.5 + x + I y] + Pi/2] +
Sqrt[l - x - I y]
Sign[Arg[l - x - I y] + Pi/2)
Sqrt[x + I y + 1]
Sign[Arg[1 + x + I y] + Pi/2]
)3,
{x,-2,2},{y,-2,2},

ContourLevels -> 81
PlotPoints -> 40]

The corresponding surface plot of u(x, y) is shown in Figure 5. The saddle on the
real axis between the two branch points has the same local structure as in the previous
example. This saddle point is associated with the refracted wave. In addition, there
is at least the suggestion of a second saddle in the trough between the two creases
corresponding to the branch cuts in the first quadrant of z. The approximate location
of this saddle is indicated by the arrow. Note that the height of this saddle is lower
than for the former one. That means that u(x, y) is smaller at this point and, thus,
the integrand is exponentially smaller at this saddle point than at the one on the real
axis. Relatively speaking, then, this contribution to the total wave field will be smaller
than the contribution from the saddle point on the real axis. The exponential decrease
is greater with increasing distance from the interface in the underlying point source
problem. The term, "evanescent field" is reserved for such exponentially decaying
contributions to the total field. A discussion of how this second saddle point affects
the integration on the paths of steepest descents through the saddle point associated
with the refracted wave is beyond the scope of this paper.

This figure was produced with the command lines

f2 = Plot3D[Re[I ( .9(x + I y) +

.4 Sqrt[.5 - x - I y]
Sign[Arg[.5 - x - I y] + Pi/2]
Sqrt[.5 + x + I y]
Sign[Arg[.5 + x + I y] + Pi/2] +
Sqrt[l - x - I y]

Sign[Arg[l - x - I y] + Pi/2]
Sqrt[x + I y + 1]
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FIG. 5. Surface ofRe i.9+.V1/4 - z2+ Z2)}.
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FIG. 6. Steepest ascent and descent paths for both saddle points of the exponent for
transmitted waves.

Sign[Arg[l + x + I y] + Pi/2]

{x,-1 .5,1.5s}, {y,-1.s, 1.5s},

BoxRatios -> {4,4,6},
PlotPoints -> 40,
ViewPoint -> {2000,10000,-2000}]

Finally, for this example we show a plot of the steepest descent paths for both
saddle points in Figure 6, produced with the following command lines

fl = ContourPlot[Im[I ( .9(x + I y) +
.4 Sqrt[.5 - x - I y]
Sign[Arg[.5 - x - I y] + Pi/2]
Sqrt[.5 + x + I y]
Sign[Arg[.5 + x + I y] + Pi/2] +
Sqrt[l - x - I y]
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Sign[Arg[l - x - I y] + Pi/2]
Sqrt[x + I y + 1]
Sign[Arg[l + x + I y] + Pi/2]

{x,-2,2},{y,-2,2},
PlotRange -> {1.29313,1.39703},
ContourLevels -> 2
PlotPoints -> 80].

The PlotRange command contains the two evaluations of Im w(z) at the saddle points.
Although the steepest ascent and descent paths through both saddle points are visible,
other level curves and the spurious paths along the branch cuts are also visible.
This figure could only be reliably used in conjunction with the previous figures to
understand the actual steepest paths.

CONCLUSIONS

In this two part paper, through a hierarchy of progressively more difficult exam-
ples, not unlike the order presented in my course, I have described the application of
Mathematica to the analysis techniques needed for the method of steepest descents. I
found the use of Mathematica to be an excellent expository aid in this course. In ad-
dition, Mathematica was used in this course in the discussion of conformal mappings
and the Cagniard-de Hoop method. The use of Mathematica was straightforward
enough that my students learned with only a few examples to guide them, and then
they used this tool routinely in homework assignments. It is clear from my expe-
rience that Mathematica can be used as a research tool in these applications as an
expository tool in the classroom.
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